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Outline

• 3 method

• Time-domain thermoreflectance (TDTR)

• The heatl diffusion equation in not completely valid 
at high frequencies: frequency dependent thermal 
conductivity and ballistic phonon transport.
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Solution for an infinite half-space

K0 is the zeroth order modified Bessel function
Think of this as the circular thermal wave

Take the Fourier transform of this frequency domain solution
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(Factor of 2 because current is at frequency )

For a low thermal conductivity thin film
on a high thermal conductivity substrate





Time-domain thermoreflectance

Clone built at Fraunhofer Institute for 
Physical Measurement, Jan. 7-8 2008



Time-domain thermoreflectance



psec acoustics and
time-domain thermoreflectance

• Optical constants and 
reflectivity depend on 
strain and temperature

• Strain echoes give 
acoustic properties or 
film thickness

• Thermoreflectance gives 
thermal properties



Schmidt et al., RSI 2008 

• Heat supplied by 
modulated pump 
beam (fundamental 
Fourier component 
at frequency f)

• Evolution of surface 
temperature

time



Schmidt et al., RSI 2008 

• Instantaneous 
temperatures measured 
by time-delayed probe

• Probe signal as 
measured by rf lock-in 
amplifier
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Analytical solution to 3D heat flow
in an infinite half-space, Cahill, RSI (2004)

• spherical thermal wave

• Hankel transform of 
surface temperature

• Multiply by transform 
of Gaussian heat 
source and take 
inverse transform

• Gaussian-weighted 
surface temperature



Iterative solution for layered geometries



Signal analysis for the rf lock-in

• In-phase and out-of-phase signals by series of sum and 
difference over sidebands

• out-of-phase signal is dominated by the m=0 term 
(frequency response at modulation frequency f)



Windows software 
author: Catalin Chiritescu, 

users.mrl.uiuc.edu/cahill/tcdata/tdtr_m.zip



Phoenix, Arizona 17

Thermoreflectance data for isotopically 
pure Si

• Two free fitting parameters

– thermal conductivity, 165 W/m-K
– Al/Si interface conductance, 185 MW/m2-K



Time-domain Thermoreflectance (TDTR) 
data for  TiN/SiO2/Si

• reflectivity of a metal 
depends on 
temperature

• one free parameter: 
the “effective” 
thermal conductivity 
of the thermally 
grown SiO2 layer 
(interfaces not 
modeled separately)

SiO2

TiN

Si



TDTR: early validation experiments



Thermal conductivity map of a human tooth 

www.enchantedlearning.com/ Distance from the DEJ (m)
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Zheng et al., JAP (2008)



The thermal penetration depth and phonon 
mean-free-path

• First, make the (incorrect) assumption that 
the mean-free-path of all phonons is the 
same.
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• so the penetration depth is large 
compared to the mean-free-path
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In reality, heat is carried by phonons with a broad 
distribution of mean-free-paths

• Simplest case of thermal conductivity where 
resistive scattering dominates

c() = heat capacity of phonon mode

vg() = phonon group velocity

τ() = scattering time  

c = cut-off frequency



Make a “Klemens-like” calculation

• Assume linear dispersion for <c and

• Convert to an integral over mean-free-path l

lc is the mean-free-path at the cut-off frequency
lmax is the maximum mean-free-path that contributes to 
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Heat is carried by phonons with a broad distribution 
of mean-free-paths

• Phonon scattering by 
charge carriers or 
boundaries will narrow 
the distribution.

• Alloying and point 
defects will broaden the 
distribution. 

• Relaxational damping 
will eventually be a 
limiting factor.

• Details are probably 
important (scattering 
rates, normal processes, 
dispersion…)



Thermoreflectance raw data at t=100 ps

• fix delay time and 
vary modulation 
frequency f.  

• semiconductor alloys 
show deviation from 
fit using a single 
value of the thermal 
conductivity

• Change in Vin doesn’t 
depend on f.  Vout
mostly depends on 
(fC)-1/2

a-SiO2

Si

InP, GaAs

InGaAs, InGaP

Koh et al., PRB (2007) 



Same data but allow  to vary with frequency f

Koh et al., PRB (2007) 



How can thermal conductivity be frequency 
dependent at only a few MHz?

• 2ffor phonons that carry significant 
heat.  For dominant phonons,   ~100 ps, 
and 2f~ 10-3.

• But the thermal penetration depth d is 
not small compared to the dominant 
mean-free-path ldom.

• Ansatz: phonons with l > d do not 
contribute to the heat transport in this 
experiment.

• True only if the “single-relaxation-time 
approximate” fails strongly.  For single 
relaxation time ,  l<<d because f



Frequency and thickness dependence 
for InGaP and InGaAs

• h=film thickness; d = thermal 
penetration depth

min(h,d)

Debye-Callaway model



Differentiate to get a distribution function

• Define 

Debye-Callaway model



Current open question: why don’t we see frequency 
dependence in pure crystals? 

c()  2

vg() = phonon group velocity

τ() = (A2T)-1

c = cut-off frequency for heat carrying        
acoustic modes

D = Debye frequency

• Fraction of thermal conductivity 
from phonons with mean-free-
path smaller than the thermal 
penetration depth



Current open question: why don’t we see frequency 
dependence in pure crystals? 

• Do we need to replace the diffusion equation as 
the basis for the analysis of TDTR experiments? 
(see also experiments by Minnich and Chen) 

• Boundary conditions at the metal/sample 
interface are complicated. Too many unknowns 
(?).  What experiment and theory can provide 
more constraints?

• Make an order-of-magnitude estimate

• This reduction is not observed.

• Why are pure crystals different than the alloy?
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