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Brief Introduction to  

Molecular Dynamics 
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Molecular Dynamics (MD) Overview 

• Computational technique that models 

• Physical properties of materials 

• Dynamical behavior of materials 

 

• Basis: classical mechanics of                                          
interacting particles that comprise  
the material 

 

• Can treat vapor, liquid, solid phases 

 

• The focus of this talk will be solids 

 
Solid (FCC crystal structure) 

Liquid 
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How Does It Work? 

• Compute trajectories of each particle in the system 

• Required inputs: 

• Initial positions (crystal structure), initial velocities (temperature) 

• System evolution: 

• Interatomic potential function (“spring”) gives force  

• Position is determined from force, velocity, and previous position 

 Displacements in video scaled by 100 

NOTE: atoms, not phonons, are tracked in MD 
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Potential Energy of the System 

• Most general (multibody) form: 

 

 
 

 

• Often the potential energy is treated as 

two-body or three-body in form, with other 

terms neglected 
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Where Do the Potential Functions Come From? 

• The functional forms of v2 and v3 are empirical or semi-
empirical 
 

• Fitted to experimental property measurements or first 
principles simulation data 
 

• Potentials have been developed for many materials 
 

• Multiple potentials may exist for a given material 

• Example: over 30 different potentials for silicon! (Stillinger-Weber, Tersoff, 
EDIP, MEAM, ...) 

• Different potentials arise from fitting to different properties or applying 
different functional forms 

• No single potential function replicates all physical properties well 
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Common Intermolecular Potentials 

 

• Two-Body 

• Lennard-Jones 

• Argon model system 

 

• Three-Body 

• Stillinger-Weber 

• Silicon, germanium, carbon (group IV) 
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Lennard-Jones Argon Potential 

• Often used in MD for preliminary, qualitative 

studies of material behavior 
 

• Advantages 

• Agreement with experimental data 

• Simple two-body form: 

 

 

 

 

• Physically meaningful parameters 
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Equations of Motion (Two-Body Potential) 
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Other integration algorithms are also used such as Gear 5th order, Runge-Kutta, etc. 

Usually explicit integration is performed due to time savings  
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More Things to Note 

• 1 mm 3    ~10 billion atoms! 
 

• Limited to short length scales    
• Max. 10s-100s of nm 

 

• Short time steps required for                         
stability of algorithm 
• Max. 100s of ns 

• Time step should be < 0.1*vibrational           
period of ‘spring’ (~ 1fs in solids) 

 

• Results are influenced by boundary conditions and 
size effects 
• Periodic BC: unphysical cutoff of long wavelength phonons 

• Non-periodic BC: physically meaningful confinement 

 

 

Maximum wavelength 
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Thermal Property Calculations 

with Molecular Dynamics 
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Calculation of Temperature Profile 

• Kinetic temperature is calculated 
via equipartition 
• Equate kinetic energy to 3/2 kBT 

 

 

 

• Temperature is time average of 
kinetic temperature 

 

 

• Temperature can be computed in 
local regions to obtain 
temperature distribution 
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Checking Local Thermodynamic Equilibrium 

x,y,z velocity component distributions plotted 

against Maxwell distribution 

 

T* = 0.5 

t=1 fs 

(a) 

 

(b) 

(c) (d) 

~ 2 nm x 2 nm 

cross section 

~ 3 nm x 3 nm 

cross section 

avgd. over 

10,000 steps 

avgd. over 

30,000 steps 

Averaging for longer time and 

over larger numbers of atoms  

→ local kinetic temperature 

approaches local 

thermodynamic equilibrium 
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Thermal Conductivity Calculation Methods 

• Equilibrium MD (Green-Kubo method*) 

 

• Direct Nonequilibrium MD 

 

• Homogeneous Nonequilibrium MD (Evans 

method**) 

  *Kubo, J. Phys. Soc. Japan, 12, 570-86, 1957. 

**Evans, Phys. Lett., 91A, 457-60, 1982.  
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Equilibrium MD (Green-Kubo method*) 

 

• Compute and store heat current (J) 

 

 

 

• Integrate heat current (J) autocorrelation  

 

 

 
  *Kubo, J. Phys. Soc. Japan, 12, 570-86, 1957. 
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Test Case: (10,10) Single Wall  

Carbon Nanotube 

http://www.photon.t.u-tokyo.ac.jp/~maruyama/agallery/nanotubes/1010vib.gif 

• REBO potential* 

 

 

• 1 fs time step 

( ) [ ( ) ( )]
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* Brenner, J. Phys.: Condens. Matter 14, pp. 783-802, 2002.  
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Thermal Conductivity vs.  

Length and Temperature 

 

Yu et al., Proc. 2003 ASME Summer Heat 

Transfer Conference, HT2003-47263, 1-6, 2003  

EMD Calculation Experiment 

• Thermal conductivity increases with nanotube length. Why? 

• More long wavelength modes are supported 

• EMD conductivity decreases with increasing temperature--trend 
does not match experiments! Why? 

• MD is purely classical. Only valid at high temperature 

Maximum wavelength 
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Boundary Condition Effect 

0

( ) (0)k J t J dt


   

Periodic 
•phonon-phonon scattering 

Free 
•phonon-phonon and  

 phonon-boundary scattering 

Free boundary reduces heat current autocorrelation 
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Effect of Compressive Strain 

1% axial compression  ~ 50%  enhancement at 300K 
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Effect of Potential 

100 200 300 400 500

50

100

150

200

250

300

350

Potential Effect on Thermal Conductivity

T
h

e
rm

a
l 
C

o
n

d
u

c
ti
v
it
y
 (

W
/m

-K
)

T (K)

  5nm with REBO

  5nm with Tersoff-Brenner

 10nm with REBO

 10nm with Tersoff-Brenner

 20nm with REBO

 20nm with Tersoff-Brenner

 40nm with REBO

 40nm with Tersoff-Brenner



21 

x 

T 

 




dxdT

q"



Direct Nonequilibrium MD 

 

• Compute local time averaged 

temperatures 

 

• Compute temperature gradient    

and use Fourier law to obtain 

thermal conductivity 
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Nonequilibrium MD Temperature Profiles 
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Homogeneous Nonequilibrium MD* 

 

• Perturb equilibrium equations of motion 
• Add terms containing a perturbation (Fe) to the force 

calculation 

 

• Compute the heat current as before 

 

• Take the long-time average of heat current and 
take the limit Fe → 0 to obtain macroscopic thermal 
conductivity 

 

 

 *Evans, Phys. Lett., 91A, 457-60, 1982.  
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HNEMD Equilibration Time 
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Thermal Conductivity Dependence on Perturbation 

• Extrapolate to Fe = 0 
to get thermal 
conductivity 

 

 Values depend on 
curve fit: 

• exp(-x) gives listed 
values 

 

 Significant questions 
remain about this 
method 
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Density of States Calculation 

Density of States is not directly needed for thermal 

conductivity calculation 

 


 )0()()( vtvdteD ti



27 

Phonon Density of States 

• Low frequency vibrational peaks found for tubes with free 
boundaries 
 

• Similar low frequency modes for small particles with free surfaces 
found by Dickey and Paskin (Phys. Rev. B, 1, 851-7, 1970) 
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Thermal Boundary Resistance  

Calculation Methods 

• Two methods: 

• Steady-state 

• Transient 

 

• Case of interest: carbon nanotube thermal 

coupling 
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Modeling Approach 

• Simulate two overlapping parallel (10,10) SWNT in 

a temperature gradient using molecular dynamics 

• Bonded interactions:         

REBO* 

• Nonbonded interactions:                                              

Lennard-Jones 

 

 
 

• Find thermal resistance at nanotube junction 
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Steady State Method 

• Initial temperature 300 K 

• Resistance increases w/spacing 

• Calculations prohibitive for long tubes  
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Transient Method 

Fitting of MD to transient finite difference solution 

enables treatment of long tubes 

MD } 
Finite  

Diff. } 
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Interfacial Thermal Resistance between Two Tubes 

• Four order of magnitude resistance change with 

intertube spacing 
 

• Comparable to other                                                

resistance studies      

 (4 A spacing): 
 

• Resistance between                                                                             

SWNT and 6 neighbors*:                                                              

 6.46x10-8 m2-K/W 

• Water in SWNT*:                                                                       

 13x10-8 m2-K/W 

• SWNT-SDS in D20                                                                        

(experiment)**:                                                                          

 8.3x10-8 m2-K/W 

 

*Maruyama et al., Proc. 1st Intl. Symp. on Micro and Nano Technology, 2004 

**Huxtable et al, Nature Materials, 2, 731-4, 2003 
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Phonon Scattering Phase 

Function Calculation 
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Nanoparticles in Alloy 

1-4 nm ErAs nanoparticles + 

In0.53Ga0.47As alloy = 

factor of 2 reduction below alloy limit 
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Question: 

 

How do phonons interact  

with individual nanoparticles? 
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Scattering Phase Functions 

 Used in acoustics, 

elasticity, radiation 

 

 Depend on polarization, 

wavelength, direction, 

particle shape 
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Phonon Scattering Phase Functions 

• Goal: study dependence of scattering phase 

function on wavelength, particle configuration 

 

• Use molecular dynamics simulation to calculate 

scattering phase function 
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Wave ‘Sensing’ using ‘Detectors’  

• Select monitoring points on a spherical surface surrounding the scatterer. 

• As the wave moves through, record local atomic velocity and stress fields at 

these points, then calculate scattered wave heat flux q(r,t) at each point. 

 

half model shown (y <0) 

44 x 16 x16 cells 

scatterer 

(inclusion) wall region wall region 
free Ar atoms 

time integral of qscattered(r,t)  phase function F 

time and surface integrals of qscattered(r,t)  cross section Ss 



39 

Particle Size Parameter 

 

• ka: size parameter 

• k: wavevector magnitude 

• a: radius (size) of particle 

 
• ka << 1: Rayleigh scattering (small particle/long wavelength) 

• ka >> 1: geometric scattering (large particle/small wavelength) 

 

Length measured in units of Lennard-Jones parameter s  
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Effect of Scatterer Shape 

Cube-shaped 

inclusion shows 

stronger backscatter. 
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Effect of Scatterer Orientation 
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Effect of k, with ka Fixed 

• Diagonals (colors) 

represent constant 

values of ka 
 

• Previous theoretical 

calculations: all 

scattering phase 

functions with the same 

ka are identical 
 

• Present results 

disagree 
 

 An additional 

parameter is needed to 

quantify scattering 

phase function 

Longitudinal incident wave, spherical scatterer 
 

ka = 1.5 (yellow), 2.1 (purple), 3 (blue), 4.2 (orange), 6 (green) 
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Effect of Roughness 

Longitudinal incident wave, spherical scatterer 
 

ka = 3 

As roughness (kAcell) increases, scattering phase functions 

transition between specular and diffuse scattering limits 
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Summary 

• Molecular dynamics simulation can provide a 

rich array of thermal transport information 

• Temperature 

• Thermal conductivity 

• Density of states 

• Thermal boundary resistance 

• Phonon scattering phase functions 
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