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Thermoelectric Phenomena: 
Fundamentals and Applications

Fundamentals

Applications

electron–hole asymmetry at 
the Fermi energy generates 
thermoelectric phenomena 

bulk

constrictions and interfaces

Kelvin-Onsager
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Thermoelectric Figure(s) of Merit ZT 
in the Linear-Response Regime

In the linear-response  regime (i.e., close to equilibrium) one 
operates close to the small voltage V = -

 

S ΔT which exactly 
cancels the current induced by the small temperature bias ΔT 

As ZT → ∞, the efficiency approaches the ideal Carnot value

η

 

C

 

= 1 -

 

T/(T+ ΔT )

thus, in the linear-response regime ΔT «

 

T typically investigated 
for bulk materials, the efficiency stays low η

 

C

 

= ΔT /T even if ZT 
can be made very large

Ultimate pragmatic goal:
devices with ZT ≈

 

2–3 that are 
stable over a broad temperature range

with low parasitic losses
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Decades of Little Progress 
in Increasing ZT of Bulk Materials

“phonon glass-electron crystal”

Mahan-Sofo

 

mechanism

PbTe

 

doped with Tl
ZT=1.5 at 773 K

Science 321, 554 (2008)

Nature Mater. 8, 83 (2009)

complex bulk materials
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New Routes for ZT Optimization Brought by 
Low-Dimensional and Nanoscale

 
Devices

Electron-phonon coupling

Transmission peaks or nodes Coulomb interaction Nonlinear regime
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PRB 78, 161406(R) (2008) PRB 82, 045412 (2010)

PR B 83, 195415 (2011)
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Graphene
 

as a Building Block of 
Nanoscale

 
and Low-Dimensional Devices
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Large-Area Graphene
 

is not
 

Suitable for
 Thermoelectric Applications

Kim Lab, PRL 102, 096807 (2009)Balandin

 

Lab, New J. Phys. 11, 095012 (2009)

Shi Lab, ACS Nano

 

5, 321 (2011); Science 328, 213 (2010)  
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Zigzag and Chiral
 

GNRs
 

with Nanopore
 

Arrays 
as Potentially High-ZT Thermoelectrics
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Nikolic group, arXiv:1201.1665

20-ZGNR

(8,1)-CGNR
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NEGF Fundamentals
Basic NEGF quantities:

NEGFs

 

for steady-state transport:

NEGF-based current expression for two-terminal nanostructures:

density of available quantum states: how are those states occupied:

Meir-Wingreen

 

formula
Landauer-Büttiker-type

 

formula 
(phase-coherent transport where 
Coulomb interaction is treated at 

the mean-field level)

NEGF (quantum) vs. Boltzmann (semiclassical) nonequilibrium

 

statistical mechanics:
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Electronic Thermopower, Conductance and 
Thermal Conductance via NEGF

Electronic transmission and its integrals:

Electronic conductance, thermopower, and thermal conductance:

N
ikolić

group, J. Com
p. Electronics

11, 78 (2012)
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Third-Nearest-Neighbor π-Orbital
 Tight-Binding Hamiltonian For Graphene
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Zigzag GNR: Fundamentals
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Areshkin

 

& White, 
Nano
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First-Principles Quantum Transport Modeling 
Charge, Heat and Spin Transport: NEGF+DFT

Trans

DFT

NEGF
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How to Apply  NEGF-DFT to Devices 
Containing Thousands of Atoms

Main Obstacles:

 

Computational complexity O(N3) of matrix 
inversion to get the retarded GF and hard-to-converge real-axis 
integration of spiky NEGF expressions to get the density matrix

O
LD

:
N
EW

:Construct the layer 
retarded Green functions 
needed for charge density 
using recursive algorithms 

with O(N) complexity

Nikolić

 

group, PRB 81, 155450 (2010)
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Gate Voltage Effect in All Carbon-Hydrogen 
GNRFET Composed of ~7000 Atoms

Zero Gate Voltage Gate Voltage -3 V 
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Nikolić

 

group, PRB 81, 155450 (2010)
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NEGF-DFT For Multiterminal
 

Devices
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Phonon Thermal Conductance via NEGF Coupled 
to Minimal Force Constant 4NNN Model

Phonon conductance:

Empirical 4NNN force constant matrix:

PRB 78, 045410 (2008)

Why no phonon-phonon scattering? at 300 K [APL 98, 141919 (2011)]
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Phonon Thermal Conductance via NEGF Coupled 
to Brenner Empirical Potential or DFT

First-principles brute force method to obtain the force constant matrix (GPAW):
we displace each atom I by QIα

 

in the direction 
α={x,y,z} to get the forces FIα,Jβ

 

on atom J

 

I 
in direction β for intra-atomic elements 

impose momentum conservation  

Brenner empirical interatomic

 

potential for hydrocarbon systems (GULP or GPAW):
The Brenner EIPs

 

are short range, so they 
cannot accurately fit the graphene

 

dispersion 
over the entire BZ.  However, the thermal 
transport depends more sensitively on the 

accuracy of acoustic phonon frequencies near 
the zone center where the longitudinal-

 

and 
transverse-acoustic (LA and TA) velocities 
and the quadratic curvature of the out-of-

 
plane acoustic (ZA) branch are determined. 
Conversely, only weak thermal excitation of 

the optical phonons and acoustic phonons near 
the BZ boundary occurs around room 

temperature because of the large Debye 
temperature (~ 2000 K) of graphene.
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Which Method Should You Use: 
Minimal 4NNNFC vs. Brenner EIP vs. DFT
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Coupled Electron-Phonon Transport via NEGF
Phonon drag:

arises due to 
interchange of 

momentum between 
acoustic phonons and 

electrons
Electron drag:

phonons are 
dragged by 

electrons from low 
into high T region

Three-

 

and four-

 
phonon many-body 

interactions

PRB 74, 125402 (2006)
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Electron and Phonon Transport 
in ZGNRs

 
and CGNRs

 
with Nanopores
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Graphene
 

Nanoribbons: Fabrication
Science  319, 1229 (2008): Chemical

 

Derivation

Nature Nanotech. 3, 397 (2008): STM Nanolithography

Nature 458, 872 (2009): SWCNT Unzipping

Nature Nanotech. 5, 190 (2010): Graphene

 

nanomesh
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Band vs
 

Transport Gaps 
in GNRs

 
with Rough Edges 
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Can We Control Formation of GNR Edges?

Dai Lab, 
Nature Phys. 7, 616 (2011)
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Thermoelectricity in Single-Molecule 
Nanojunctions

 
(see mini-review arXiv:1111.0106)

Cuniberti

 

group, PRB 81, 235406 (2010)
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Toward Metal-Free Molecular Electronics

Nature. Mater. 5, 63 (2006)

Science 311, 356 -

 

359 (2006)

N
ikolić

group, PRL 100, 236803 (2010)

Control of the contact structure between an organic molecule and

 

a metal 
electrode (usually gold) is difficult because bonding to metal atoms, 
although potentially strong, is not strongly directional, leading to poor 
reproducibility

 

of most metal-molecule-metal junctions.

Our junctions with strong 
molecule-electrode 

coupling evade problems 
due to the lack of 

derivative discontinuity

 

in 
continuous local and semi-

 
local DFT approximations 
(LDA and GGA) as a major 

source of error

 

in 
calculating the I-V 

characteristics
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ZGNR|molecule|ZGNR
 

Thermoelectric Devices 
Based on Evanescent Mode Transport

ZGNR|C10|ZGNR

ZGNR|18-annulene|ZGNR

-2 -1 0 1 20.0

0.5

1.0

-2 -1 0 1 2-1000

-500

0

500

1000

-2 -1 0 1 20.0

0.5

1.0

-2 0 2
-1500

-1000

-500

0

500

1000

 

 T=77 K
 T=300 K

 

  E - EF (eV)

LU
M

O

H
O

M
O

LU
M

O(a)

 E - EF (eV)

S 
(

V
/K

)

 T
el
(E

)

(d)(c)

(b)

S 
(

V
/K

)

T el
(E

) H
O

M
O

 T=77 K
 T=300 K

 E - EF (eV) E-EF (eV)

-2 -1 0 1 20.0

0.2

0.4

0.6

0.8

0 100 200 3000

1

2

3

-2 -1 0 1 20.0

0.2

0.4

0.6

0.8

0 100 200 3000

1

2

3 T=77 K
 T=300 K

 

 E-EF=0
 E-EF=-0.02 eV
 E-EF=-0.04 eV 

  Temperature (K)

 T=77 K
 T=300 K

(a)

 E - EF (eV)

ZT

ZT
(d)(c)

(b)

ZT

ZT

 E-EF=0
 E-EF=-0.02 eV
 E-EF=-0.04 eV

 E - EF (eV) Temperature (K)

Nikolić

 

group, PRB

 

84, 041412(R) (2011) 
+ J. Comp. Electronics 11, 78 (2012)



First-principles thermoelectricity in nanostructuresPhonon School at IWCE 2012

Three-Terminal Single-Molecule Nanojunction
 Thermoelectrics

Nikolić

 

group, PRB

 

84, 041412(R) (2011)
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Fabrication of Single-Molecule Nanojunctions
 with Graphene

 
Electrodes

van der

 

Zant

 

Lab, Nano

 

Lett. 11, 4607 (2011)

depositing molecules inside a 
few-layer graphene

 

nanogap

 

(of 
the size 1-2 nm) formed by 

feedback controlled 
electroburning

Gatable

 

I-V characteristics at 
room temperature
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Conclusions in Pictures 
Empirical versus first-principles 

phonon transport modeling: Edge currents and 
nanopores

 

in GNR 
thermoelectrics:

Evanescent mode 
transport in single-

 
molecule nanojunctions

 

to 
optimize power factor:
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