Monte Carlo Simulation of Phonon Transport

Edwin B. Ramayya

Materials Science and Engineering Department Electrical and Computer Science Engineering Department University of Wisconsin - Madison

IWCE 2012 Phonon School

Outline

Silicon Nanowires – Efficient TE Materials

A. I. Hochbaum et al., Nature 451, 163 (2008).

Thermal Conductivity in Silicon Nanowires

A. I. Hochbaum et al., Nature 451, 163 (2008).

Thermal Conductivity in Silicon Nanowires

D. Li et al., Appl. Phys. Lett. 83, 2934 (2003).

Confined Acoustic Phonon Spectrum

Why confined ? Due to acoustic mismatch between Si and SiO_2 – severe when confined more

SiO₂ is acoustically soft Acoustic impedance $\zeta = \rho v_s$ mismatch between Si & SiO₂ is ~40 %

Solve elastic continuum equation

with free-standing boundary conditions (**FSBC**):

normal component of stress tensor vanishes at interfaces

$$T_{ij}n_j\Big|_s=0$$

L.Donetti *et al.*, *J. App. Phys.* **100**, 013701 (2006) E.P. Pokatilov, *Phys. Rev. B* **72**, 113311 (2005) M.Dutta *et al.*, *Int. J. High Speed Electronics and Systems* **9**, 1 (1998) C.M. Sotomayor *et al.*, *Phys. Status Solidi C* **1**, 2609 (2004) (Experimental)

Confined Acoustic Phonons →Slower Phonons

Flattened dispersion \rightarrow lower group velocity

Confined Acoustic Phonons

Phonon confinement insufficient to explain two orders of magnitude reduction in thermal conductivity

Thermal Conductivity – Roughness Dependence

Bulk Si \rightarrow SiNWs : Two orders of magnitude reduction in thermal conductivity

A. I. Hochbaum et al., Nature 451, 163 (2008).

Simulator Flowchart – Thermal Conductivity

Why Monte Carlo for Phonons

 Normal (N) processes do not offer resistance because there is no change in direction

$$\vec{k}_1 + \vec{k}_2 \iff \vec{k}_3$$

 Umklapp (U) processes offer resistance to phonons because they turn phonons around

$$\vec{k}_1 + \vec{k}_2 \iff \vec{k}_3 \pm \vec{G}$$

N processes change the phonon distribution \rightarrow indirectly affect the thermal conductivity

Why Monte Carlo for Phonons

Can treat the actual surface without using a specularity parameter.

A good way to capture phonon localization and the particular features of a given surface \leftarrow better than specularity parameter

Ensemble Monte Carlo Simulation

When solving the BTE – ensemble Monte Carlo (EMC) technique is the state-of-the-art

Utilizing random numbers to determine

- how long does a particle fly between scattering events
- what scattering mechanism to choose
- how to update momentum afterwards

Very robust and versatile

Dispersion Approximation

Dispersion Approximation

E. Pop et al., J Appl. Phys. 96, 4998 (2004)

Thermal Transport EMC

Heat one end, let phonons diffuse, wait for steady state temperature gradient to be established, and from Fourier's law determine the thermal conductivity

R. B. Peterson, *J. Heat Transfer* **116**, 815 (1994)
S. Mazumder and A. Majumdar, *J. Heat Transfer* **123**, 749 (2001)
Lacroix *et al. Phys. Rev. B* **72**, 064305 (2005)

Phonon Initialization: Number of Phonons

$$\langle n(\mathbf{q}, p, T) \rangle = \frac{1}{exp(\frac{\hbar\omega p, \mathbf{q}}{k_B T}) - 1}$$
 N_w spectral intervals

$$N = V \sum_{p=LA,TA} \sum_{i=1}^{N_w} \left[\frac{1}{exp(\frac{\hbar\omega_i}{K_B T}) - 1} \right] \frac{q_{i,p}^2}{2\pi^2 \upsilon_{i,p}} g_p \Delta \omega$$

10 x 10 x 10 nm³ cell has ~ 10⁵ phonons $\tilde{N} = N/W_t$.

E. B. Ramayya and I. Knezevic, Phys. Rev. B, submitted (2012)

Phonon Initialization: Phonon Attributes

$$N = V \sum_{p=LA,TA} \sum_{i=1}^{N_w} \left[\frac{1}{exp(\frac{\hbar\omega_i}{K_BT}) - 1} \right] \frac{q_{i,p}^2}{2\pi^2 \upsilon_{i,p}} g_p \Delta \omega$$

- Frequency
- Polarization
- Group Velocity
- Direction (q_x, q_y, q_z)
- Position (x,yz)

Frequency is found from the cumulative number density function

scat

• Pick a random number R

 $F_{i-1} \leq R \leq F_i$

• Select ω from the *i*th spectral interval

Polarization is found from the ratio of LA to TA phonons in a particular spectral interval

$$P_i(LA/TA) = \frac{N_i(LA)}{N_i(LA) + N_i(TA)}$$

• Pick a random number R

 $R < P_i(LA/TA)$

polarization p = LA else p = TA

Phonon Initialization: Group Velocity and Wavevector

Group velocity and magnitude of wavevector can be found from the dispersion

$$\omega_q = \omega_o + v_s q + c q^2$$

Direction of wavevector - isotropic

$$\hat{\mathbf{s}} = \begin{pmatrix} \sin \theta \cdot \cos \psi \\ \sin \theta \cdot \sin \psi \\ \cos \theta \end{pmatrix} \qquad \psi = 2 \pi R_2, \ \cos \theta = 2R_1 - 1$$

Phonons in a cell are distributed isotropically

 R_1 , R_2 , and R_3 are random numbers L_x , L_y , and L_z are dimensions of the device n_z is the number of cells

Energy of the cell should automatically be in accordance to the cell temperature

$$E = V \sum_{p=LA,TA} \sum_{i=1}^{N_w} \left[\frac{\hbar \omega_i}{exp(\frac{\hbar \omega_i}{K_B T}) - 1} \right] \frac{q_{i,p}^2}{2\pi^2 \upsilon_{i,p}} g_p \Delta \omega$$

Check for consistency between N, E, and T
Find T from numerical inversion of E (of each cell) and check if it corresponds to the initialization temperature

- Let the phonons diffuse with the their initial velocities and track the position
- If the phonon crosses a cell delete it from that cell and assign the new cell number
- After each time step calculate the temperature from the net new energy of each cell
- If a phonon reaches an end cell delete it from the simulation domain
- Reinitialize the phonons in the end cells after each dt

Thermal Transport Ballistic Phonons

Ballistic steady state temperature is given by the Stefan-Boltzmann law of blackbody radiation

$$T_{ss}^B = [(T_H^4 + T_L^4)/2]^{1/4}$$

Phonon Monte Carlo Transient Simulation

- Phonon that underwent a scattering at the boundary is deleted and a new phonon is emitted from the boundary
- Direction of wavevector isotropic (normal to the surface)

$$\hat{\mathbf{s}} = \begin{pmatrix} \sin \theta \cdot \cos \psi \\ \sin \theta \cdot \sin \psi \\ \cos \theta \end{pmatrix} \qquad \begin{array}{l} \theta = \sin^{-1}(R_1) \\ \psi = 2\pi R_2 \end{array}$$

M. Modest, Radiative Heat Transfer p.654 (Academic Press, New York 2003)

- Phonon that underwent scattering is deleted and a new phonon is created from new distribution function weighted by the scattering rate
- Phonons that underwent a U scattering are replaced by phonons which have a new direction
- Phonons that underwent a N scattering are replaced by phonons with same direction but different magnitude.
- Phonon-impurity/isotope scattering is treated as isotropic

Frequency is found from the cumulative number density function weighted by scattering probability

Important for conserving the energy

Phonon Monte Carlo Transient Simulation

E. B. Ramayya and I. Knezevic, Phys. Rev. B, submitted (2012)

Flux crossing two adjacent cells in steady state

$$\Phi = \frac{W_t}{dt} \sum_{i=1}^{N_c} \hbar \omega \frac{\mathbf{q}_z}{|q|}$$

Thermal conductivity is calculated from Fourier's law

$$\kappa = \frac{1}{A} \frac{\Delta L}{\Delta T} \Phi$$

Bulk Silicon Thermal Conductivity

S. Mazumder and A. Majumdar, J. Heat Transfer 123, 749 (2001)

Limitation of Diffuse Boundary Scattering

Lacroix et al. Appl. Phys. Lett. 89, 103104 (2006)

D. Li et al., Appl. Phys. Lett. 83, 2934 (2003)

Surface Roughness Inclusion in Monte Carlo

Can treat the actual surface without using a specularity parameter.

A good way to capture phonon localization and the particular features of a given surface \leftarrow better than specularity parameter

Transient Results

E. B. Ramayya and I. Knezevic, Phys. Rev. B, submitted (2012)

Thermal Conductivity: Roughness Dependence

- κ_I is more than an order of magnitude lower than that in bulk due to strong boundary scattering of phonons
- Decreases with increase in rms.

Thermal Transport Quasi-Balistic Phonons

Increase the length

Losing phonons

Bug in the code

10x phonon-phonon scattering

Losing phonons but not as much as before

Bug in the code

Worse than before

Losing phonons

Only boundary scattering

Bug in the randomization after boundary scattering

Losing more phonons than that are injected

Thermal Conductivity: GaN

GaN Nanowires for Thermoelectric Applications A. Davoody 3:30 Thursday

By changing the dispersion, the algorithm can be easily adapted to calculate the thermal conductivity of different semiconductors

Summary

Monte Carlo simulation of phonon transport can be used to account for the large reduction in thermal conductivity in silicon nanowires

- Roughness inclusion as in electron transport
- Can be adapted to other semiconductors

References

- R. B. Peterson, *J. Heat Transfer* **116**, 815 (1994)
- S. Mazumder and A. Majumdar, J. Heat Transfer 123, 749 (2001)

Lacroix et al. Phys. Rev. B 72, 064305 (2005)

Lacroix et al. Appl. Phys. Lett. 89, 103104 (2006)

E. Pop et al., J Appl. Phys. 96, 4998 (2004)

J.-J. Wu, Tribol. Int. 33, 47 (2000)

S. M. Goodnick et al., Phys. Rev. B 32, 8171 (1985)

E. B. Ramayya and I. Knezevic, *Phys. Rev. B*, submitted (2012)