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Graphene Graphite 



Phonon Dispersion 

Karssemeijer and Fasolino, Surface Science 605, 1611 (2011) 
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Polarizations 

• Atomic impurities scatter only short- phonons.  

• Nanostructures scatter long- wave. 5 
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Lattice or Phonons Electronic 



• Intrinsic thermal conductivity of 2D graphene increases with length.  

• The contribution of the flexural (ZA) modes is negligible. 6 



• The phase space for phonon-phonon scattering involving the ZA modes is restricted so 

that the ZA modes actually make the dominant contribution to the thermal conductivity of 

suspended graphene. 

ZA 

TA 

LA 



“This means that all 

the results in Refs. 

[8,9] for nanotubes 

shorter than 103 Å 

violate the quantum 

upper bounds. We 

attribute this to the 

fact that those are 

results from a 

classical molecular 

dynamics simulation, 

in which the quantum 

limits play no role.” 
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Many MD simulation results exceed the ballistic thermal 

conductance limit of graphene. 

M. M. Sadeghi, M. T. Pettes, L. Shi, Solid State Communications, DOI: 

10.1016/j.ssc.2012.04.022 (2012) 
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Raman Measurement of Thermal Transport in Carbon Nanotubes 
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• Each circle corresponds to the position 

of the laser spot when spectra were 

taken at two different laser powers.  

 

• Unknown optical absorbance  

I-K. Hsu, R. Kumar, A. Bushmaker, S. B. Cronin, M. 

T. Pettes, L. Shi, T. Brintlinger, M. S. Fuhrer, J. 

Cumings,  Appl. Phys. Lett. 92, 063119 (2008) 
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Measurements: 

• Raman G peak shift  temperature rise in graphene (>200 K) 

• Raman G band intensity  Optical absorbance ≈ 9% per laser pass 

Assumptions: 

• Negligible heat transfer between graphene and the SiO2 support 

• Graphite layers ≈ perfect heat sinks 

• Same thermal conductivity for suspended and supported graphene 

Thermal conductivity: 

4840-5300 W/mK  
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Optical absorption:  

~9% at 488 nm (Balandin, Nano Lett. 2008, 8, 902)  

(2.3 ±0.1)% at 550 nm (Nair, Science 2008, 320, 1308) 

(3.3±1.1)% at 532 nm (this work)  

Suspended 

Supported 

G 2D 

Au 
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• The optical absorbance is proportional to the optical conductivity (s), and may increase 

from 2.3% at 1eV (~1240 nm) to ~3.4% at ~2.54 eV (~488 nm).  



(4.1 ± 0.2) × 

10-2 cm-1/K. 

Raman Peak Shift 
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Measured Thermal Resistance (Rm): 

2r0 

2R = 3.9 m 

• Long wavelength phonons with m.f.p. > r0 are not thermalized within the laser spot, 

giving rise to the ballistic resistance that increases with decreasing r0.  

• Laser spot radius r0 was 

measured to be 0.17 and 0.28 

m for the 100 x and 50 x 

objective lens, respectively. 

  

Raman Measurement of Suspended CVD Graphene 



2r0 

• With the laser spot on the supported graphene,  

       Rm = f(g, ks, r0),  

where  

   g = the graphene-Au thermal interface conductance, 

   ks = thermal conductivity of the supported graphene.  

• Two Rm values at two different r0 were used to obtain  

      g = (28 + 16/-9.2) MW/m2 K,  

      ks = (370 + 650/-320) W/m K, at near room temperature 

  

• Thermal contact resistance  

  Rc = f(g, ks, R) = (4.4 + 8.4/-2.0) × 104 K/W << Rm 

2R = 3.9 m 

Raman Measurement of Supported CVD Graphene 
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Temperature* (K)
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•* For Raman measurements, the temperature is the graphene temperature measured by 

the Raman laser beam, whereas the substrate temperature is at room temperature. 

Thermal Conductivity Comparison 
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Temperature* (K)
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• The thermal conductivity value measured in air is higher than that measured in vacuum.    

• The size dependence is masked by the large measurement uncertainty. 

Thermal Conductivity vs. Suspended Graphene Size 
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Temperature sensitivity:  

• Raman spectroscopy: ~40 K 

• Resistance thermometry: ~40 x 10-3 K 

Alternative Thermal Measurement Methods 
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Thermal Measurement of Individual Nanowires 

L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. 

Majumdar, J. Heat Transfer 125, 881 (2003) 
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(Th’-Ts’)/ (Th-Ts) 

S ≈ V14/(Th-Ts) 

Four-Probe Thermoelectric Measurements of Individual Nanowires 

• A. Mavrokefalos, M. T. Pettes, F. Zhou, L. Shi, 

Review of Scientific Instruments 78, 034901 (2007) 
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Thermal Measurement of Supported Graphene 
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Seebeck Coefficient (S) & Electrical Conductivity (s) 

• S = f(EF) can be fitted with EF = 0.049 eV. 

• Electron concentration n = (EF/ħvF)2/ = 1.7 x 1011 cm-2 . 

• Electron mobility ( = s/ne ) is comparable to the highest values reported 

for supported graphene.  



• G of the graphene/SiO2 central beam was 

measured before and after the graphene was 

etched in O2 plasma. 

Thermal Conductance (G ≡ 1/Rs) 

• The obtained SiO2 thermal conductivity is in 

good agreement with literature values.  

“If the substrate is itself a thin film of low thermal conductivity, the additional 

conductance of the graphene sheet may be just observable.” 

         P. G. Klemens, Int. J. Thermophysics 22 (2001)  
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jjsubstrate KDOS /)(,  

KZA = 

KLATA 

KLATA = 0 

j = ZA, LA, or TA 

Interface force constant:  

KZA
 ≈ 0.4 N/m 

KLATA < KZA 

• In 2D and at low T:  

Relaxation time   ~a   

  
 k  ~ T2+a 

• Phonon leakage across the 

interface: 

Thermal Conductivity Suppression in Supported Graphene 

PG (Touloukian) 

Supported SLG 

• Roughness scattering:  

  - Rayleigh scattering:   ~ -4 

-Geometric scattering: l ~  0  

Seol et al., Science 328, 213 (2010) 



Suspended Graphene between Micro-Thermometers 

10 m 10 m 10 m 
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2 nm 10 nm 
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Thermal Interface Conductance of Graphene 

36 
Chen, Jang, Bao, Lau, Dames, Appl. Phys. 

Lett.2009, 95, 161910 

M. M. Sadeghi, M. T. Pettes, L. Shi, 

Solid State Communications, DOI: 

10.1016/j.ssc.2012.04.022 (2012) 



• The thermal conductivity enhancement with the addition of graphene is 

superior to the effects of silver nanowires or CNTs. 

• The performance is still limited by the large interface thermal resistance.  
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Graphene Foam and Ultrathin Graphite Foam 

Scale bars: 50 m 

• Methane CVD growth at 1050oC on sacrificial Ni foam 



Graphene Foam and Ultrathin Graphite Foam 

• Effective thermal conductivity  • Solid thermal conductivity  

kG = 3kGF /f 

~0.45 vol % for GF1-4 

~1.4 vol % for GF5-6 

• Solid concentration (f): 

• Metal foam theory: 

• Lemlich J. Colloid Interface Sci. 64, 107–110 (1978) 

• Schuetz & Glicksman, J. Cellular Plastics 20, 114–121 (1984) 



Comparison with Graphitized Carbon Foams 

Pettes, Ji, Ruoff, Shi, Nano Letters (2012) 
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• The absence of interlayer phonon scattering in suspended monolayer 

graphene may result in higher intrinsic basal plane thermal conductivity than 

that of graphite.  

• Contact of graphene with an amorphous solid or organic matrix can 

suppress phonon transport in graphene.  

• The solid thermal conductivity of graphene foam is comparable to HOPG, 

and the effective thermal conductivity is not limited by internal thermal 

contact resistance.  

Summary 
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