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OUTLINE OF TALK

• Phonons in nanocomposites 

• Theories of phonon transport 

• Phonon scatterings due to nanocomposite 
formation

•  Results for phonon conductivity in Si/Ge 
and GaAs/AlAs superlattices

• Summary
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NANOCOMPOSITES: EXAMPLES 

Nanometre-sized materials, e.g.

•Superlattices ( …/A/B/A/B/…)

•Nanowires embedded in another bulk
•Nanodots embedded in another bulk

•etc
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THEORIES OF PHONON TRANSPORT

• Using linear-response 

Classical Green-Kubo 
formalism using 
Newtonian molecular 
dynamics of particles

Quantum Green-Kubo 
formalism using  
canonical average of 
phonon number operator

• Using Boltzmann eqn 
Concept of semi-classical 

statistics of phonon 
distribution function in 
space and time. Solutions 
using:

Relaxation-time methods;
Iterative methods; or
Variational principles. 

Validity limited by 
Landau-Peierls-Ziman condition    

(ωτ>1, or 
sample size>wavelength)



  5

PHONON TRANSPORT IN 
NANOCOMPOSITES

Three regimes for conductivity (κ) depending on the ratio 
phonon MFP (Λ) / composite period (d=d1+d2):

(i) d >> Λ:  1/κ = (d1/κ1 + d2/κ2)/(d1+d2);

(ii) d ~ Λ:  1/κ = (d1/κ1 + d2/κ2 + 2/σK)/(d1+d2),

 σK = Kapitza resistance of interface;

(iii) d << Λ: Formulate and use phonon dispersion relations 
and phonon scattering rates for nanocomposite.

Present treatment for regime (iii).
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THERMAL CONDUCTIVITY: 
single-mode relaxation time approach 

Require to know:

(i) Phonon dispersion relations: ω =ω (qs)

(ii) Phonon group velocity: v=dω /dq

(iii) Relaxation time for all phonon modes: τ(qs)

q=phonon wavevector; s=phonon polarisation
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PHONON DISPERSION CURVES
(Lattice dynamics)

Theories and references: 

Adiabatic bond charge model; 
H M Tutuncu and G P Srivastava,PRB 53, 15675 (1996)

S P Hepplestone and G P Srivastava, 
PRL 101, 105502 (2008); J. Appl. Phys. 107, 043504 (2010)

 Ab-initio pseudopotential DFPT 

I O Thomas and G P Srivastava, (Unpublished)
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PHONONS IN BULK MATERIALS  

[001]
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PHONONS IN 
THIN SUPERLATTICES  

Characteristic features: Zone-folding; Gap openings; Confinement

Blue: band gap in TA branch; Green: band gap in LA branch

(Si)2(Ge)2[001]
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RELAXATION-TIME THEORY OF 
PHONON TRANSPORT IN 

NANOCOMPOSITES

Ingredients:    Phonon Boltzmann equation + 
   single-mode relaxation time approach +
   elastic continuum model for anharmonicity +

            first-order time-dependent perturbation theory

References:
S. Y. Ren and J. D. Dow, PRB 25, 3750 (1982)
G. P. Srivastava, The Physics of Phonons (Taylor & Francis, 1990)
S. P. Hepplestone and G. P. Srivastava 

PRB 82, 144303 (2010); PRB 84, 115326 (2011)
I. O. Thomas and G. P. Srivastava (unpublished)
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THERMAL CONDUCTIVITY TENSOR

Important for 
nanocomposites and 
different from single 
crystals
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Interface mass-mixing 
 in A(N)/B(M) superlattice - 1

A B A B

Ideal interface
Smudged 
interface

Perturbation in Hamiltonian due to interface mass mixing 

M = mass;  v = time derivative of atomic displacement
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Interface mass-mixing scattering
 in A(n)/B(m) superlattice - 2

A B

A-B mixed

Smudged 
interface

Σs’
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Amplitude Ratio

eB/eA = f(ω)
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Interface broken-bonds 
in A(N)/B(M) superlattice - 1

A B

Region of broken bonds
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Interface broken-bonds scattering
in A(n)/B(m) superlattice - 2

A B

Region of broken bonds

Σs’



  17

Anharmonic crystal potential
in A(n)/B(m) superlattice -- 1

Anharmonic crystal potential
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Anharmonic crystal potential
in A(n)/B(m) superlattice -- 2

Our model anharmonic crystal potential

ωΓ(j) = zone centre frequency for jth branch;

C(j) = phase velocity for jth branch;

γ  = Grüneisen’s constant 

A continuum model that includes acoustic as well as optical modes
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Anharmonic scattering
in A(n)/B(m) superlattice -- 1

DM = dual mass term  (MA ≠  MB)

DM(q,q’,q’’)

When both acoustic and optical phonons are considered 
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Anharmonic scattering
in A(n)/B(m) superlattice -- 2

DM = dual mass term  (MA ≠  MB)

When only acoustic phonons are considered 
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Anharmonic scattering
in A(n)/B(m) superlattice – 3

Dual Mass Term

ρj =mass density of jth material 
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Anharmonic scattering
in A(n)/B(m) superlattice – 4
‘mini-Umklapp’ processes

A Normal three-phonon 
process in bulk turns into a 
‘mini-Umklapp’ process 
upon superlattice formation
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Numerical calculations

• Phonon frequencies and group velocity 
using adiabatic bond charge model

• Realistic Brillouin zone summation using 
‘special q-points’ scheme 
– Monkhorst & Pack (1976)

• Grüneisen’s parameter γ  adjusted to fit Si 
bulk thermal conductivity
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THERMAL CONDUCTIVITY RESULTS - Bulk

Bulk Ge

Expt. Data: Glassbrenner and Slack, PR, A1058 (1964)

γ  = 0.5
γ  = 0.8
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THERMAL CONDUCTIVITY RESULTS – 
Si(n)/Ge(m)[001] superlattices

Symbols: Expt: Lee et al, APL 70, 2957 (1997)

Dominant factors: 
     α(IMS) & 
α’(IDS)

No dislocations

Large concentration of 
defects and dislocations

Bulk Ge
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THERMAL CONDUCTIVITY RESULTS – 
Si(n)/Ge(m)[001] superlattices
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Thermal conductivity of (GaAs)2(AlAs)2[001] SL

Expt: Capinski et al, PRB 59, 8105 (1999)

Important role of 
anharmonicity

Bulk GaAs
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Conductivity vs SL period:
Explanation of experimental results

‘Increase’ from A to B due to decrease of IMS scattering rates in short-
period (n,m) superlattices as 1/(n+m)2.

 ‘Flat’ behaviour from C to D due to plastic deformation of structure 
(presence of large density of dislocations and stacking faults) in large-
period strained-layer Si/Ge superlattices.

GaAs/AlAs:

Capinski et al, PRB 59, 8105 
(1999) 

Si/Ge:

Lee et al, APL 70, 2957 (1997)

A

B

DC
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SUMMARY
Derived expressions for model Hamiltonians and 
phonon relaxation rates arising from interface mass 
mixing, interface dislocations, and anharmonicity in 
nanoscale semiconductor superlattices;

Presented numerical results for phonon conductivity 
tensor, within single-mode relaxation time scheme, 
using accurate phonon dispersion relations for 
acoustic as well as optical branches, and a realistic 
method for Brillouin zone summation;

Explained experimental conductivity results for Si/Ge 
and GaAs/AlAs superlattices;

Further progress desirable and in progress.
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