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Transverse Optical (TO) Phonon

Transverse Optical (TO) Phonon
® ®u — displacement
q - direction

Transverse Acoustic (TA) Phonon

S—>»

o LO and LA Phonons have
displacements along the
direction of q



Boundary Conditions:
Optical modes --- continuity of the tangential component of

the electric field and the z component of the displacement vector
must be continuous at the interfaces

Acoustic modes --- displacement and normal component of stress
tensor are continuous at interfaces
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Quantized Confined Phonons



Normalization:

Mode amplitude normalized so that the energy in each model e

1s the quantized phonon energy — example 2D graphene
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McEwen & Park et al., Nature

September 2000 Elastic Continuum Results
Mode Energy (meV)
a, 62
a, 74
a, 111
b, 32
b, 38
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35 meV mode observed experimentally Matches our theoretical results to 10%

Goal: Theoretical Description of Nanoscale Mechanical Structures for Nanodevice
and Sensor Applications including Nanocantilevers
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Precision and Nature of
Optical Phonon Confinement
H. Sakaki et al.

Klemen’s Channel with Keating Model ---Bhatt, Kim and Stroscio



(1) () eh (el
slab uided HZ MICTOSCOPIC

Lonfined

N
qz =0 ug b '/\\_/E_ M _.rf'r-;ﬂ:;?'f"..
v .WF.. I E A,

interface

g = 0.15 A \\._\]. - Hl- oy ,,-_J :.-:

Figure U3 The z-component of the atomic displacement, w;, and the
corresponding potential ¥V for each of the modes reported by Ricker ef af. (1991,
19921, The optical modes are presented for a 56 A (001 j-oriented GaAs quantum

well surraunded by teo AlAs layers, o
Molinari et al.



IF1 F2

T ) (SR —

Potential (arb, units)

AL AN

L ) | i I

[ Wi I i I
-1 . [ I I

[ 1 i | I

i l I I I
_2r_....I,.l.l...-l....l.l..r.... PR P I P P T T

=G0 =40 =20 O 20 40 =40 —20 0 20 40 80
z (&) z (&)
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Figure C.] for the case ol intrasubband transitions and Figure C.2
for the case of intersubband transitions.

Form factors fy(g) for intrasubband scattering for optical modes in a quantum
well as functions of gd for three different cases: (g) slab modes, () reformulated
slab modes, and () guided modes. The labels 1.2, and oc designate the lowest-order
mode, the second-order mode, and the infinite sum over all modes. (&) depicts the
total form factor for bulk modes, f#, as well as that for the interface modes, f7;
o= f® 4 f1 From Nash ( 1992), American Physical Sociely, with permission.

Mash (1992) showed that the form factors fyig)
ele and orthogonal modes —slab modes plus

corresponding to the three sets of comp

[ modes, H-Z modes plus [F modes, and guided modes — are identical. This result
1s evident from Fgure C.1 for the case of intrasubband transitions and Fgure C.2

for the case of intersubband transitions.



Selection of Major Theoretical Papers: Optical Modes

* R. Fuchs and K. L. Kliewer, “Optical Modes of Vibration in an Ionic Slab,”
Physical Review, 140, A2076-A2088 (1965).

 J.J. Licari and R. Evrard, “Electron-Phonon Interaction in a Dielectric Slab:
Effect of Electronic Polarizability,” Physical Review, B15, 2254-2264 (1977).

L. Wendler, “Electron-Phonon Interaction in Dielectric Bilayer System: Effects of
Electronic Polarizability,” Physics Status Solidi B, 129, 513-530 (1985).

* C. Trallero-Giner, F. Garcia-Moliner, V. R. Velasco, and M. Cardona, “Analysis of
the Phenomenological Models for Long-Wavelength Polar Optical Modes in
Semiconductor Layered Systems,” Physical Review, B45, 11,944-11,948 (1992).

K. J. Nash, “Electron-Phonon Interactions and Lattice Dynamics of Optic Phonons
in Semiconductor Heterostructures,” Physical Review, B46, 7723-7744 (1992). ---
For slab modes, reformulated slab vibrations, and guided modes, “intrasubband and
intersubband electron-phonon scattering rates are independent of the basis set used to
describe the modes, as long as this set is orthogonal and complete.”

 F. Comas, C. Trallero-Giner, and M. Cardona, “Continuum Treatment of Phonon
Polaritons in Semiconductor Heterostructures,” Physical Review, B56, 4115-4127
(1997). --- Seven coupled partial differential equations; solutions for isotropic
materials; the non-dispersive case “leads to the the Fuchs-Kliewer slab modes.”




More on
Confined,
Interface, and
Half-Space
Phonon Modes

in

Phonons and
Nanostructures
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Phonon frequency (meV)
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Improved Semiconductor
Lasers via Phonon-Assisted
Transitions

Key Point -- Optical Devices not Electronic Devices!

Why? ENERGY SELECTIVITY

A single engineered phonon mode may be selected
to modify a selected interaction




Interface Optical Phonons: Applications to Phonon-Assisted
Transitions in Heterojunction Lasers
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Phoneon enhanced inverse population in asymmetric double quantum wells
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Double Resonance Scheme
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Michael A. Stroscio, Mikhail V. Kisin, Gregory Belenky,
and Serge Luryi, Phonon Enhanced Inverse Population in
Asymmetric Double Quantum Wells, Applied Physics
Letters, 75, 3258 (1999).



Subband energy (meV)
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References 4 and 5:

M. Kisin, M. Stroscio, V. Gorfinkel, G.
Belenky and S. Luryi, Influence of
Complex Phonon Spectrum of
Heterostructure on Gain Lineshape in
Quantun Cascade Laser

(QCL), Optical Society of America,
Technical Digest Series, Volume 11,
425 (1997).

Mikhail V. Kisin, Vera B. Gorfinkel,
Michael A. Stroscio, Gregory Belenky,
and Serge Luryi, Influence of Complex
Phonon Spectra on Intersubband Optical
Gain, J. Appl. Phys., 82,2031 (1997).
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Phonon Engineering: Some Key Technigues

e Dimensional Confinement and Boundary Effects Cause Plane
Wave Phonons (Bulk Phonons) to by Replaced by Set of Modes
--- Same as Putting Electromagnetic Wave in a Waveguide

e Bulk modes — Confined modes, plus interface modes, plus
half-space modes with new energies, and spatial profiles.

SINCE CARRIER INTERACTIONS MUST CONSERVE

ENERGY AND MOMENTUM HAVING NEW PHONON

ENERGIES LEADS TO WAYS TO MODIFY CARRIER
SCATTERING AND TRANSPORT...




Phonon Engineering: Some Key Techhigues

EXPLOITING THE FACT THAT NEW ENERGIES LEADS TO WAYS TO MODIFY CARRIER
SCATTERING AND TRANSPORT ---

ePhonon assisted transitions — Example: use to enhance population inversions in Quantum
Cascade Lasers, Type-II Lasers, etc.

eChange phase space to modify interactions — In devices based on quantum wells, quantum
wires, and quantum dots reduces the set of phonon momenta and energies allowed in
transitions --- Example: Phase-space reductions in CNTs lead to enhanced carrier mobilities

e Modify materials to change phonons and thus interactions — Examples: (a) Form metal-
semiconductor inteface to eliminate selected interface modes; (b) Reduce carrier-phonon

interactions through the design of In Ga_N-based structures exhibiting one mode behavior

eModify phonon lifetimes (by arranging for different anharmonic terms) and phonon speeds
(by modifying dispersion relations)— Reduce bottleneck effects; modify thermal transport

e Generate coherent phonons using Cerenkov effect (as an example) to amplify phonon effects



Some areas where phonon engineering has clear payoff:

improved gain in semiconductor lasers (especially lasers with narrow quantum
wells like quantum cascade lasers),

enhance gain in Sh-lased lasers,
coherent phonon sources for non-charge-based binary switches and devices,
increasing carrier mobilities in CNTs,

improving CNT-based IR detectors based on understand phonon-assisted
non-radiative recombination,

improving lll-nitride-based device performance,

phonon engineering to modify thermal conductivity.



United States Patent 6,819,696 Belenky, Dutta, Kisin, Luryi, and Stroscio. November 16, 2004
United States Patent 7,310,361 Belenky, Dutta, Kisin, Luryi, and Stroscio. December 18, 2007

Intersubband semiconductor lasers with enhanced subband depopulation rate

Abstract

Intersubband semiconductor lasers (ISLs) are of great interest for mid-infrared (2-20 micron) device
applications. These semiconductor devices have a wide range of applications from pollution detection
and industrial monitoring to military functions. ISLs have generally encountered several problems
which include slow intrawell intersubband relaxation times due to the large momentum transfer and
small wave-function overlap of the initial and final electron states in interwell transitions. Overall, the
ISL's of the prior art are subject to weak intersubband population inversion. The semiconductor device
of the present invention provides optimal intersubband population inversion by providing a double
guantum well active region in the semiconductor device. This region allows for small momentum
transfer in the intersubband electron-phonon resonance with the substantial wave-function overlap
characteristic of the intersubband scattering.

Inventors: Belenky; Gregory (Port Jefferson, NY); Dutta; Mitra (Wilmette, IL); Kisin; Mikhail (Lake
Grove, NY); Luryi; Serge (Setanket, NY); Stroscio; Michael (Wilmette, IL) Assignee: The United States
of America as represented by the Secretary of the Army (Washington, DC) Appl. No.: 957531 Filed:
September 21, 2001



Resonant phonon-assisted depopulation in type-I and
type-II intersubband laser heterostructures

M. V. Kisin', M. A. Stroscio’, G. Belenky', and S. Luryi'
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Figure 1. Left: schematic band diagram of an asymmetric InAs/GaSh
DOW modeling an active region of mtersubband type-Il cascade laser.
Black arrow depicts the nterband LO-phonon assisted depopulation
process. Right: subband sphtting in the upper part of the leaky window &

Short vertical arrows indicate the positions of the Van Hove singularities.
In conclusion, we show that in type-Il intersubband laser heterostructures the
interband LO-phonon-assisted scattering can be used as an efficient complementary
process for the fast depopulation of the lower lasing states.

Inst. Phys. Conf. Ser. No 174: Section 5
Paper presented at 29th Int. Symp. Compound Semiconductors, Lavsanne, Switzerland, 7-10 October 2002
©2003 IOP Publishing Ltd



Phonon-Assisted Transitions in Heterostructure Lasers
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Intersubband semiconductor lasers with enhanced subband depopulation rate

Abstract

Intersubband semiconductor lasers (ISLs) are of great interest for mid-infrared (2-20 micron) device
applications. These semiconductor devices have a wide range of applications from pollution detection
and industrial monitoring to military functions. ISLs have generally encountered several problems
which include slow intrawell intersubband relaxation times due to the large momentum transfer and
small wave-function overlap of the initial and final electron states in interwell transitions. Overall, the
ISL's of the prior art are subject to weak intersubband population inversion. The semiconductor device
of the present invention provides optimal intersubband population inversion by providing a double
guantum well active region in the semiconductor device. This region allows for small momentum
transfer in the intersubband electron-phonon resonance with the substantial wave-function overlap
characteristic of the intersubband scattering.

Inventors: Belenky; Gregory (Port Jefferson, NY); Dutta; Mitra (Wilmette, IL); Kisin; Mikhail (Lake
Grove, NY); Luryi; Serge (Setanket, NY); Stroscio; Michael (Wilmette, IL) Assignee: The United States
of America as represented by the Secretary of the Army (Washington, DC) Appl. No.: 957531 Filed:
September 21, 2001



IMPROVEMENTS IN HETERSTRUCTURE LASER PERFORMANCE

e Population Inversions Enhanced by Over an Order of Magnitude
e Gain-length Reduced — Greater Coherence and Compact Devices

e Improved Carrier Injection — Reduced Chirp

These improvements result primarily because in
optoelectronic devices energy selectivity matters
and it is accordingly possible to select one engineered
phonon mode to precisely engineering/control the
desired interactions/parameters.




Phonon Engineering in CNTs to Optimize

- Carrier Mobilities
- IR Detectors
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Phonon Engineering to Modify Thermal Conductivity
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Lattice Dynamics of Pyrolytic Graphite™
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Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
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2D 1ntrinsic thermal conductivity of

|
AT =— ,l_r_:'? C, (f)vi:(f.T)df

Zi(f’T):

4k
G, (f): a3f2

d

f; =46x10"

P. G. Klemens,

Mv3fd
Apg kTS’

graphite

2D Intrinsic Thermal Conductivity vs T
2000 [ [ | | [

1500 I~ ]

1000 — ]

Thermal Conductivity (W/mK)

Hz

500 | | I I | I
300 400 300 600 700 800 900 1000

Temperature (K)

Two-dimensional intrinsic thermal conductivity of
graphite as a function of temperature.

Graphite, Graphene and Carbon Nanotubes”, Thermal Conductivity 26, p. 48



Effective average point defect

concentration
Cl‘” Row
1st
2nd

Contacts

1.5

- 1D-|l~—1|
{r. i

N: number of circumferential atoms W
n: number of rows nth \/\/‘\/\/
|- length of CNT

d: distance between 2 nearest atoms Ke Sun et al.

uonoalig agny



Effective average point defect

concentration

Row

CNT

-

Since for a tube of 1 row, its length 1s 0.5d
where d 1s the length of the side of the hexagon equal to
0.142 nm, and for n rows, the tube length 1s

"I;-.- =05d+(n—1)x154d.

Contacts

the number of rows 1s thus

i_ll
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15

and the total number of atoms mn the carbon nanotube 1s
INn.  With one defect at each end of the tube the

average point defect concentration 15
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End effects of point defects
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End effects of point defects on CNT thermal
conductivity:
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Ke Sun et al.



Thermal Conductivity (W/mK)

Compare point defect scattering and
boundary scattering

Thermal Conductivity vs Tube Length
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Thermoelectric figure of merit

Ke Sun et al.

Z' ? 'y S ' S ‘ ? ' / l Thermoelectric Figure of Merit
I I I I

S is the Seebeck

coefficient, o is the electric
conductivity, T is the .
absolute temperature and

A is the thermal L
conductivity

~
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High ZT values achieved in other systems Thermoelectric figure

include AgPb, SbTe,, ., reported to exhibit a of merit as a function
ZT of ~2.2 at 800 K. ZT values of 2.0 at of temperature for a
300 K have been obtained for PbSnSeTe single-wall CNT of

alloy materials and ~0.8 for the material about 4.1 nm in length.

CsBi,Tegz produced at 225 K



Summary: Thermal Effects

» Studied 2D graphite intrinsic thermal
conductivity as a function of temperature.

 Included effects of point defect scattering
and boundary scattering

* High ZT values are obtained for CNTs of
submicron lengths



Graphene: Confined Phonons

Ribbons
Quantum Dots

Jun Qian et al.




Confined Phonons in 2D Graphene Sheet

(1)
U:AOP’U, U=u,—u,=|v Jun Qian et al.
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Gopalov's Equation



Confined Phonons in 2D Graphene Sheet
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Graphite C-axis Thermal
Conductivity



Thin Graphite Sheet: phonon
confinement




Graphene exhibit high in-plane thermal conductivity, which opens possibility for thermal management in
nanoelectronic circuits. Here, instead, we studied the c-axis thermal conductivity. The Klemens model
supplemented with phonon mode quantization is used to estimate the thermal conductivity along the c-axis in
defect-free graphite that is treated as infinite in the lateral directions but finite (a few planes of graphene) in the
c-direction. As discussed by Klemens, in one dimension the phonon spectral specific heat is

kN _ &k GG Ke Sun et al.based
wf, 2pf |o<? xrrr:;ulahon of
eme

C(f)=

G, = 1/a,
is the number of layers in a crystal of unit thickness and unit width, each layer having

G’=1/a,’

is the number of atoms per unit area; accordingly, the number of phonon states is /N = G12G3

The, one-dimensional intrinsic thermal conductivity is given by the usual procedure of integrating this spectral specific
heat over the velocity and scattering mean free path; that is,

f upper

Cvldf
Stower

=~
I

where the lower frequency, f,,,,, and the upper frequency, f, .., are determined by the c-axis phonon dispersion relation.
For film thicknesses of about 10 nm or less , phonon quantization effects are pronounced and the dispersion relation is
discrete in confined directions. f, . =2.75 THz is the measured value of the upper frequency along the c-axis.
Moreover, the lowest possible frequency is given approximately by f;,.,., = f,,,,.,/L» where L is the number of atoms in the
one dimensional chain of carbon atoms, assuming a linear dispersion which is evidently a good approximation from the

measured dispersion curve.



Thus, the one dimensional thermal conductivity 1s given by

4 JR—
(T, 1) =2 b 963! wim -k
87[7/ T f;:pper / L f;tpper T

where p=2.26x10" kg/m’ is the density of graphite

” Ke Sun et al.based
Jupper =2.75x10" Hz on formulation of
Klemens

y*=4  isthe Gruneisen parameter squared, and

v 1s the out-of-plane group velocity. v=932 m/s

v has been taken to be the average of the LA and TA branches ,
and the upper frequency, f, .., was taken in accord

with the measured dispersion relation along the c-axis.

The figure depicts the 1D thermal conductivity of a graphite
sheet made of 2, 4, 6, and 8 planes of carbon atoms,

respectively, as a function of temperature.
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Enhanced carrier mobilities as a result of reduced carrier-phonon scattering rates in nitride-based systems
may be exploited in nitride-based devices as follows:

- use InN-based structures in view of the reduced carrier-phonon interactions (and thus enhanced mobilities) in
these systems; a factor of four reduction is expected as compared to AIN based simply on the relative sizes of the
Fréhlich coupling constants;

- line broadening associated with the decay of phonons in nitride-based systems of wirtzite structure
containing point defects; point defects may enhance Raman linewidths, and therefore result in desired reductions,
of approximately a factor of two, in a LO phonon lifetimes for nitride-based systems of wirtzite structure;

- use metal-semiconductor interfaces or heterostructures having relatively high doping on one

side of the heterostructure, may lead to substantial reduction in carrier scattering from the dominant interface
modes; this effect is predicted since the electric field of the LO phonon is screened in the metal-like region leading
to a boundary condition of vanishing LO phonon field at the interface which effectively eliminated the interface
modes since they take on their maximum value at the interface;

- reduce carrier-phonon interactions through the design of In,Ga_N-based structures exhibiting one mode
behavior, rather than the nominal two-mode behavior; this approach is based on theoretical predictions --- based
on a modified random-element isodisplacement model --- that the A1 and E1 branches in In,Ga_N exhibit one-
mode behavior, as well as experimental results indication one-mode behavior in ternary nitride-based systems.
This approach will be combined with effort to exploit the reduced Fréhlich coupling constant in InN-based systems.

- use heterolayers parallel to the current channel that have phonon frequencies that are mismatched with those of
the current-carrying-nitride-based materials. The introduction of such layers imposed boundary conditions on the
phonons by introduction nodes in mode amplitudes at such layers, thereby resulting in means of engineering the
phonon modes and thus the carrier-phonon interactions.



Piezoelectricity in nanowires

_ PIEZOELECTRIC TENSORS _
Wurtzite / HAVE DIFFERENT FORMS <Irjcb|ende
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Z( ) piezoelectric tensor (in cylindrical coordinates), P piezoelectric polarization,

V pi¢” oelectrically induced potential generated in a nanowire
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The current literature addresses a large variety of piezo-devices based on
over-simplified stress-strain relationships. When the exact piezoelectric
tensor is used, the results are dramatically altered in many cases resulting
in the magnitude of the piezoelectric effects larger (or smaller) than the
published results for bending and stretching of nanowires! It is essential

to use the exact piezo tensor as discussed by Sen et al. These effects are
discussed in:

Banani Sen, Michael Stroscio, and Mitra Dutta, Piezoelectricity in Wurtzite
Polar Semiconductor Nanowires: A Theoretical Study, Journal of Applied
Physics, 110, 024506 (2011).

Banani Sen, Michael Stroscio, and Mitra Dutta, Piezoelectricity in Zinc Blende
Polar Semiconductor Nanowires: A Theoretical Study, Journal of Applied
Physics, 111, in press (2012).

Rocksalt case to come (Banani Sen) ..

Selected results are given in the following slides.



Length 1 (along wire at center radius) ~ Fraction of radian times R + a/2

Length 2 (along wire at bottom radius) ~ Fraction of radian times R

Change in Length Along C-Axis (Length 1 — Length 2) ~ Fraction of radian times a/2

)

X

y
Delta Perp./Delta Parallel

y ~ R times (FOR)?/ a/2 times FOR
~ 2R/a times (FOR)
~ Length of Wire/Thickness of Wire

FOR = fraction of radian

Thickness, a

x/y ~ X[y’ ~ (Fraction of radian times R)/R = Fraction of radian
yly’ ~ (Fraction of radian times R)/R = Fraction of radian
x/y’ ~ (Fraction of radian)? 2 x ~ R times (Fraction of radian)?



Wurtzite

Piezoelectric polarization P =e -5 and the potential generated 7 =- :

[P

For materials with wurtzite crystal structure, the piezoelectric tensor in cartesian co-ordinates
For phonon propagation at an arbitary angle 1 in XZ plane, the

0000¢0 stress tensor transforms to [¢']=[a]e]#7| where [a]is the
e50 0 0e 00 rotation transformation matrix and [ir|is the bond stress
e, e e 000 transformation matrix derived from
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In cylindrical polar co-ordinates, [e"]Z [ale][ﬁ ]
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The strain vector S in cylindrical polar coordinates
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Piezoelectrically induced polarization in cylindrical polar coordinates is given as
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Static permittivity for wurtzitecrystals  -_| o ¢ o0

On coordinate transformation for phonon propagation at an arbitary angle n

£ = [alla][g][a][al]

. . . . . 1 —
For no free charge nanowires, piezoelectric potential generated is given by V' =—— jPod,B
£ —&,
G G, Gy 0
E E E
Piezoelectric stiffening G, G G5 0

0
0
CECECE 00
Ct = E
=0 0 0 C. 0
0O 0 0 0 C~
0o 0 0 0 0 —(cr-c

Elastic stiffness tensor

S O O O O

For phonon propagation at an arbitary angle n, the stiffness matrix transforms as

¢t =[m]cz, 1]



Results

Strain applied along z-axis, ou, s the only non-zero term
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Zincblende

Piezoelectric polarization P =e -5 and the potential generated 7 =- 1

[P

For materials with wurtzite crystal structure, the piezoelectric tensor in cartesian co-ordinates

000e, 0 0
e4000 0 ¢, 0
0000 0 e

For phonon propagation at an arbitary angle 1 in XZ plane, the stress tensor transforms to
e ]=[a]e]iz] where [a] is the rotation transformation matrix and [M ] is the bond stress
transformation matrix derived from



In cylindrical polar co-ordinates, [e"]: [ale][ﬁ ]
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The strain vector S in cylindrical polar coordinates
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Piezoelectrically induced polarization in cylindrical polar coordinates is given as
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Static permittivity for wurtzitecrystals -_| o ¢ 0
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For no free charge nanowires, piezoelectric potential generated is given by V' =— IF-d,B

Piezoelectric stiffening

Elastic stiffness tensor ¢, ¢, G5 0 0
CE Cct CE 0 0
CE CECE 0 0

S O O O O

0 0 0 0 0 %(Cfl—qg)

For phonon propagation at an arbitary angle n, the stiffness matrix transforms as

¢t =[m]cs, 1]



Results

Strain applied along z-axis, ou, s the only non-zero term
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On bending wire, ou, is the only non-zero term
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